Omega-3, omega-6 in diet alters gene expression in obesity

Public Release: 15-May-2018

 

Fatty acid supplementation regulates gene coding for secreted proteins in muscles

American Physiological Society

Bethesda, Md. (May 15, 2018)–A new study reveals that essential fats in the diet may play a role in regulating protein secretion in the muscles by changing the way genes associated with secretion act. The study is published ahead of print in Physiological Genomics.

Alpha-linolenic acid (ALA) and linoleic acid (LA) are plant-based essential fats–called polyunsaturated fatty acids (PUFA)–that humans consume through diet. ALA is an omega-3 fatty acid; LA is an omega-6 fatty acid. Omega-3 and omega-6 fatty acids have been shown to be beneficial to brain health and reduce the risk of inflammation and heart disease.

Previous studies have shown that proteins secreted from the muscles (skeletal muscle secretome) help regulate signaling of metabolic activities such as muscle fiber formation and the function of insulin-producing beta cells in the pancreas. This prior research suggests that obesity and insulin resistance–an inability of the body to properly respond to insulin–changes the skeletal muscle secretome. A research team from the University of Guelph in Ontario, Canada, explored how regular consumption of essential fats regulates how genes use information (gene expression) associated with the skeletal muscle secretome.

The researchers studied glucose levels and took samples from muscle and RNA–a molecule chain that uses genetic information from DNA to produce proteins in the cells–from four groups of rats:

  • a lean group ate a normal diet (“lean”),
  • an obese group ate food supplemented with ALA (“ALA”),
  • an obese group ate food supplemented with LA (“LA”), and
  • an obese control group ate a normal diet (“obese control”).

After 12 weeks on the respective diets, both the ALA and LA groups had lower glucose levels and better glucose tolerance compared to the obese control group. These factors improved more in the ALA group than the LA one. In addition, the researchers found more than 135 genes that expressed differently–based on diet–among the four groups of animals, including genes that correspond with 15 secreted proteins. Expression in most of these proteins differed between the lean and obese groups.

These results suggest that “LA and ALA may differentially regulate the skeletal muscle secretome,” the researchers explained, and that the addition of PUFA further alters gene expression. “Our findings concerning the relationship between obesity and the skeletal muscle secretome add valuable information to a relatively understudied area of investigation.”

###

Read the full article, “Alpha-linolenic acid and linoleic acid differentially regulate the skeletal muscle secretome of obese Zucker rats,” published ahead of print in Physiological Genomics.

NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the communications@the-aps.org>APS Communications Office or 301-634-7209. Find more research highlights in the APS Press Room.

Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents more than 10,500 members and publishes 15 peer-reviewed journals with a worldwide readership.

  1 comment for “Omega-3, omega-6 in diet alters gene expression in obesity

In order to not be misidentified as spam, please mention something in the article.

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

%d bloggers like this: