import pandas as pd
import numpy as np
pd.set_option(‘display.max_columns’, None)
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import plotly.express as px
import warnings
import gc
warnings.filterwarnings(“ignore”)
date = pd.Timestamp.now().strftime(‘%m/%d/%Y’)
import re
gc.enable()
vdata=pd.read_csv(‘2021VAERSData.csv’, encoding=’latin1′, dtype={‘BIRTH_DEFECT’:object},low_memory=False)
vvax = pd.read_csv(‘2021VAERSVAX.csv’,encoding=’latin1′,low_memory=False)
vsymp = pd.read_csv(‘2021VAERSSYMPTOMS.csv’,encoding=’latin1′,low_memory=False)
vsymp.info()
dp =[2,4,6,8,10]
vsymp.drop(vsymp.columns[dp],axis=1, inplace=True)
c = [7,12,15,23]
vdata.drop(vdata.columns[c],axis=1, inplace=True)
v1 = vdata.merge(vvax, on=’VAERS_ID’, how=’outer’)
v1.head(1)
VAERSM = v1.merge(vsymp, on =”VAERS_ID”, how=’outer’)
VAERSM.head(1)
VAERSM = VAERSM.query(‘VAX_TYPE== “COVID19″‘)
VAERSM.to_csv(“VDUP.csv”, index=False)
del vdata
del vvax
del vsymp
del VAERSM
VDUP = pd.read_csv(‘VDUP.csv’,encoding=’latin1′,memory_map=True, low_memory=False)
test = VDUP.duplicated(subset=[“VAERS_ID”])
print(test.value_counts())
del test
VDUP.query(‘VAX_TYPE==”COVID19″‘,inplace=True) #ISOLATES VACCINE TYPE
gc.collect()
fullframe = VDUP.copy(deep=True) #Full frame will have duplicated VAERS ID
nodupids = VDUP.drop_duplicates(subset=[‘VAERS_ID’], keep=’first’)
del VDUP
print(len(fullframe),len(nodupids))
pd.options.display.max_colwidth = 5000
nodupids[[‘VAERS_ID’,’SYMPTOM_TEXT’]].head(3)
D_nodupids = nodupids.query(‘DIED==”Y”‘)
zero_d = D_nodupids.query(‘NUMDAYS <= 1’,)
zero_d.replace({np.nan:’N’ },regex=True,inplace=True)
d_count =len(zero_d)
zero_d[“SYMPTOM_TEXT” ]=zero_d[‘SYMPTOM_TEXT’].str.wrap(100)
zero_d[‘SYMPTOM_TEXT’]= zero_d[‘SYMPTOM_TEXT’].str.replace(‘\\n’,'<br />’)
zbar= zero_d.groupby(‘AGE_YRS’)[‘DIED’].count().to_frame().reset_index()
zbar
fig = make_subplots(rows=1, cols=2,shared_yaxes=False)
fig.add_trace(
go.Box( y=zero_d[‘AGE_YRS’], boxpoints=’all’,name=’Median Mortality’, text=zero_d[[‘AGE_YRS’,’SYMPTOM1′,’SYMPTOM2′,’SYMPTOM3′,’SYMPTOM4′,’SYMPTOM5′,’SYMPTOM_TEXT’]],hovertemplate = “AGE %{text[0]} <br> %{text[1]} <br> %{text[2]} <br> %{text[3]} <br> %{text[4]} <br> %{text[5]} <br> %{text[6]}”),
row=1, col=1
)
fig.add_trace(
go.Bar(x=zbar[‘AGE_YRS’],y=zbar[“DIED”],name=’Total by Age’,width=1, text=zbar[[‘AGE_YRS’,’DIED’]],hovertemplate = “AGE %{text[0]} <br>Deaths Reported: %{text[1]}”) ,
row=1, col=2
)
fig.update_layout(legend_traceorder=”normal”,template=’plotly_dark’,legend=dict(
itemclick=”toggleothers”,
itemdoubleclick=”toggle”),hoverlabel=dict(
bgcolor=”red”,
font_size=30,
font_family=”Rockwell”))
fig.update_layout(font=dict(family=”Droid Sans Mono”,size=30))
fig.update_yaxes(tickfont_size=30, ticks=”outside”, ticklen=20, tickwidth=10,showspikes=True)
fig.update_xaxes(tickfont_size=30, ticks=”outside”, ticklen=20, tickwidth=10,showspikes=True)
fig.update_layout(height=1000, width=1900, title_text=f”DIED or DIED WITHIN 1 DAY OF SHOT -REPORTS TO VAERS #{d_count}”)
fig.show()
dlong = nodupids.query(‘NUMDAYS >=11 and NUMDAYS <500’)
dlong.replace(np.nan,”N”, inplace=True)
dlong[“SYMPTOM_TEXT” ]=dlong[‘SYMPTOM_TEXT’].str.wrap(100)
dlong[‘SYMPTOM_TEXT’]= dlong[‘SYMPTOM_TEXT’].str.replace(‘\\n’,'<br />’)
fig = px.scatter(dlong, x=’NUMDAYS’,y=’VAERS_ID’,color=”DIED”,hover_data=[‘SYMPTOM_TEXT’])
fig.update_layout(height=900, width=1900, title_text=f”LONG RANGE -REPORTS TO VAERS 11 Days or More as of {date}”)
fig.update_layout(legend_traceorder=”normal”,template=’plotly_dark’,legend=dict(
itemclick=”toggleothers”,
itemdoubleclick=”toggle”),hoverlabel=dict(
bgcolor=”black”,
font_size=30,
font_family=”Rockwell”
) )
fig.update_layout(font=dict(family=”Droid Sans Mono”,size=30))
fig.update_xaxes(tickfont_size=30, ticks=”outside”, ticklen=20, tickwidth=10)
fig.update_yaxes(tickfont_size=30, ticks=”outside”, ticklen=20, tickwidth=10)
fig.show()
del dlong
gc.collect()
dshort = D_nodupids.query(‘NUMDAYS >=1 and NUMDAYS < 11 ‘)
dshort.replace(np.nan,”N”, inplace=True)
dshort[“SYMPTOM_TEXT” ]=dshort[‘SYMPTOM_TEXT’].str.wrap(100)
dshort[‘SYMPTOM_TEXT’]= dshort[‘SYMPTOM_TEXT’].str.replace(‘\\n’,'<br />’)
zdbar= dshort.groupby(‘AGE_YRS’)[‘DIED’].count().to_frame().reset_index()
d_count= zdbar[‘DIED’].sum()
fig = make_subplots(rows=1, cols=2,shared_yaxes=False)
fig.add_trace(
go.Box( y=dshort[‘AGE_YRS’], boxpoints=’all’, name=’Median Mortality’, text=dshort[[‘AGE_YRS’,’SYMPTOM1′,’SYMPTOM2′,’SYMPTOM3′,’SYMPTOM4′,’SYMPTOM5′,’SYMPTOM_TEXT’]],hovertemplate = “AGE %{text[0]} <br> %{text[1]} <br> %{text[2]} <br> %{text[3]} <br> %{text[4]} <br> %{text[5]} <br> %{text[6]}”),
row=1, col=1
)
fig.add_trace(
go.Bar(x=zdbar[‘AGE_YRS’],y=zdbar[“DIED”],name=’Total by Age’,width=1,text=zdbar[[‘AGE_YRS’,’DIED’]],hovertemplate = “AGE %{text[0]} <br>Deaths Reported: %{text[1]}”),
row=1, col=2
)
fig.update_layout(legend_traceorder=”normal”,template=’plotly_dark’,legend=dict(
itemclick=”toggleothers”,
itemdoubleclick=”toggle”),hoverlabel=dict(
bgcolor=”red”,
font_size=30,
font_family=”Rockwell”))
fig.update_layout(font=dict(family=”Droid Sans Mono”,size=30))
fig.update_yaxes(tickfont_size=30, ticks=”outside”, ticklen=20, tickwidth=10,showspikes=True)
fig.update_xaxes(tickfont_size=30, ticks=”outside”, ticklen=20, tickwidth=10,showspikes=True)
fig.update_layout(height=1000, width=2300, title_text=f”DIED or DIED WITHIN 10 DAYS OF SHOT -REPORTS TO VAERS #{d_count}”)
fig.show()
del dshort
gc.collect()
You must log in to post a comment.